106 research outputs found

    A Low-Complexity and Asymptotically Optimal Coding Strategy for Gaussian Vector Sources

    Get PDF
    In this paper, we present a low-complexity coding strategy to encode (compress) finite-length data blocks of Gaussian vector sources. We show that for large enough data blocks of a Gaussian asymptotically wide sense stationary (AWSS) vector source, the rate of the coding strategy tends to the lowest possible rate. Besides being a low-complexity strategy it does not require the knowledge of the correlation matrix of such data blocks. We also show that this coding strategy is appropriate to encode the most relevant Gaussian vector sources, namely, wide sense stationary (WSS), moving average (MA), autoregressive (AR), and ARMA vector sources

    On the asymptotic optimality of a low-complexity coding strategy for WSS, MA, and AR vector sources

    Get PDF
    In this paper, we study the asymptotic optimality of a low-complexity coding strategy for Gaussian vector sources. Specifically, we study the convergence speed of the rate of such a coding strategy when it is used to encode the most relevant vector sources, namely wide sense stationary (WSS), moving average (MA), and autoregressive (AR) vector sources. We also study how the coding strategy considered performs when it is used to encode perturbed versions of those relevant sources. More precisely, we give a sufficient condition for such perturbed versions so that the convergence speed of the rate remains unaltered

    Rate-distortion function upper bounds for Gaussian vectors and their applications in coding AR sources

    Get PDF
    source coding; rate-distortion function (RDF); Gaussian vector; autoregressive (AR) source; discrete Fourier transform (DFT

    The protective performance of modern motorcycle helmets under oblique impacts

    Get PDF
    Motorcyclists are at high risk of head injuries, including skull fractures, focal brain injuries, intracranial bleeding and diffuse brain injuries. New helmet technologies have been developed to mitigate head injuries in motorcycle collisions, but there is limited information on their performance under commonly occurring oblique impacts. We used an oblique impact method to assess the performance of seven modern motorcycle helmets at five impact locations. Four helmets were fitted with rotational management technologies: a low friction layer (MIPS), three-layer liner system (Flex) and dampers-connected liner system (ODS). Helmets were dropped onto a 45° anvil at 8 m/s at five locations. We determined peak translational and rotational accelerations (PTA and PRA), peak rotational velocity (PRV) and brain injury criteria (BrIC). In addition, we used a human head finite element model to predict strain distribution across the brain and in corpus callosum and sulci. We found that the impact location affected the injury metrics and brain strain, but this effect was not consistent. The rear impact produced lowest PTAs but highest PRAs. This impact produced highest strain in corpus callosum. The front impact produced the highest PRV and BrIC. The side impact produced the lowest PRV, BrIC and strain across the brain, sulci and corpus callosum. Among helmet technologies, MIPS reduced all injury metrics and brain strain compared with conventional helmets. Flex however was effective in reducing PRA only and ODS was not effective in reducing any injury metrics in comparison with conventional helmets. This study shows the importance of using different impact locations and injury metrics when assessing head protection effects of helmets. It also provides new data on the performance of modern motorcycle helmets. These results can help with improving helmet design and standard and rating test methods

    Necessary and sufficient conditions for AR vector processes to be stationary: Applications in information theory and in statistical signal processing

    Get PDF
    As the correlation matrices of stationary vector processes are block Toeplitz, autoregressive (AR) vector processes are non-stationary. However, in the literature, an AR vector process of finite order is said to be stationary if it satisfies the so-called stationarity condition (i.e., if the spectral radius of the associated companion matrix is less than one). Since the term stationary is used for such an AR vector process, its correlation matrices should somehow approach the correlation matrices of a stationary vector process, but the meaning of somehow approach has not been mathematically established in the literature. In the present paper we give necessary and sufficient conditions for AR vector processes to be stationary. These conditions show in which sense the correlation matrices of an AR stationary vector process asymptotically behave like block Toeplitz matrices. Applications in information theory and in statistical signal processing of these necessary and sufficient conditions are also given

    The DEMO magnet system – Status and future challenges

    Get PDF
    We present the pre-concept design of the European DEMO Magnet System, which has successfully passed the DEMO plant-level gate review in 2020. The main design input parameters originate from the so-called DEMO 2018 baseline, which was produced using the PROCESS systems code. It defines a major and minor radius of 9.1 m and 2.9 m, respectively, an on-axis magnetic field of 5.3 T resulting in a peak field on the toroidal field (TF) conductor of 12.0 T. Four variants, all based on low-temperature superconductors (LTS), have been designed for the 16 TF coils. Two of these concepts were selected to be further pursued during the Concept Design Phase (CDP): the first having many similarities to the ITER TF coil concept and the second being the most innovative one, based on react-and-wind (RW) Nb3Sn technology and winding the coils in layers. Two variants for the five Central Solenoid (CS) modules have been investigated: an LTS-only concept resembling to the ITER CS and a hybrid configuration, in which the innermost layers are made of high-temperature superconductors (HTS), which allows either to increase the magnetic flux or to reduce the outer radius of the CS coil. Issues related to fatigue lifetime which emerged in mechanical analyses will be addressed further in the CDP. Both variants proposed for the six poloidal field coils present a lower level of risk for future development. All magnet and conductor design studies included thermal-hydraulic and mechanical analyses, and were accompanied by experimental tests on both LTS and HTS prototype samples (i.e. DC and AC measurements, stability tests, quench evolution etc.). In addition, magnet structures and auxiliary systems, e.g. cryogenics and feeders, were designed at pre-concept level. Important lessons learnt during this first phase of the project were fed into the planning of the CDP. Key aspects to be addressed concern the demonstration and validation of critical technologies (e.g. industrial manufacturing of RW Nb3Sn and HTS long conductors, insulation of penetrations and joints), as well as the detailed design of the overall Magnet System and mechanical structures

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics
    • …
    corecore